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Transitions Tori-Chaos Through Collisions 
with Hyperbolic Orbits 
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Three models of dissipative dynamical systems are described in which a trans- 
ition from biperiodic to aperiodic motion proceds via collisions of a hyperbolic 
orbit with either a torus or a strange attractor. 
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1. I N T R O D U C T I O N  

The problem of transition to chaos in dynamical systems has received in 
the last few years a lot of interest. It has been studied extensively both from 
the theoretical and the experimental or numerical point of view. Many 
"scenarios" in which chaos is reached from periodic regimes are by now 
well established in very many experimental or numerical works carried out 
on a large variety of physical systems and mathematical  models; they are 
also fairly well understood theoretically (see Refs. 14 ) .  This is not the case 
for transitions to chaos from doubly periodic regimes: even though this 
route to chaos is rather frequently seen in physical systems and the 
theoretical literature on the subject is growing rapidly, a satisfactory 
understanding of the matter  has not yet been achieved. 

Among the scenarios so far encountered in studies of the break-up of 
invariant circles in two dimensions or of two-dimensional invariant tori in 
higher-dimensional systems we mention (a) doubling of tori (Refs. 5-8), (b) 
oscillations between a couple of tori symmetrically conjugate of each other 
(Refs. 9-10), (c) occurrence of homoclinic tangency (Refs. 11, 12). In a 
number of other cases it seems that the transition to chaos occurs through 
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an intermediate periodic state which, contrary to the assertion in Ref. 13, 
we suspect plays a very important role. 

In this paper we discuss three cases of transitions from tori to fully 
developed chaos in four- and six-dimensional dissipative dynamical systems 
in which a (stable) periodic orbit appears in the intermediate regime. This 
orbit is borne via a tangent bifurcation and the hyperbolic orbit associated 
to it causes the disappearence of a two-dimensional torus in one case and 
of a strange attractor in the other two cases through a collision, that is 
coming in contact with them. The phenomenon seems very much the same 
as that described as "crisis" in Refs. 14, 15. 

The paper is organized in the following way: in Section 2 we introduce 
concepts and definitions necessary to describe the results contained in Sec- 
tion 3. Finallly, Section 4 is devoted to comments and concluding remarks. 

2. C O N C E P T S  A N D  D E F I N I T I O N S  

All of the models we consider consist of systems of ordinary, first- 
order, nonlinear differential equations depending on a parameter R. They 
are obtained under suitable truncations of the Fourier-series expansion of 
the solution of the Navier-Stokes equations for an incompressible fluid 
moving on a plane with periodic boundary conditions. The details of the 
derivations and the specific assumptions used in them can be found in 
Ref. 16. The models, denoted I, II, and III, respectively, are given explicitly 
by the following systems: 

Model I: 

2 2  = -2X2 + 4X3 X 4 + R 

2 3 ~--- - -  5 X 2 - -  X 2 X 4 

2 4  = - - X 4  - -  N ~  X1 X2 - 3 X 2 X 3  

Model II: 

)~1 = -2X1 + 4J(2)~ 3 

2 2  = - - 5 X  2 - -  X I X  3 - -  9/x/5 X 3 X  4 + R 

23 = - X 3  - 3XIX2 + ~ X2X4 

2 4 = - - l O S  4 -]- 4 / N / 5  X 2 X  3 
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Model III: 

21 = -2Xa + 4X2X 3 + 4X4 X  5 

2 2 = --9X 2 + 3X1X3 

)(3 = -5X3 - 7XlX2 + R 

2 4 ~--" --5X 4 -- X 1 X5 

2 5= - X  5 -3X  1X 4 q - ~ x l x 6  

X6 = - X 6 - ~ X 1 X  5 

All of the models contain only quadratic nonlinearities and depend on the 
parameter R, which appears in only one of the equations. They exhibit 
exponential volume contraction: a given volume V 0 at any arbitrary initial 
time evolves with the law V(t) = Vo exp Ct, C being the sum of the coef- 
ficients of the linear terms of the systems (all negative). Moreover they 
possess some symmetry properties; in particular I and II are left unchanged 
if one acts on the variables with the operator 

0~: (Xl, ~2, X'3, X4) --~ ( - X l ,  X2, - X 3 ,  - ~ 4 )  

in model II the same happens with the three different operators 

~: (x , ,  x2, x3 ,x4 ,xs ,  x6) ~ ( -Xl ,  -x2,  x3, x4, -x s ,  x6) 

/~: (Xl, JR, X3, X4, Xs, X6) --~ (--Xl, --X2, X3, --X4, Xs, --X6) 

~): (X 1, X2, X 3, X4,X5, X6)--)" (Xl, X2, X 3, - X 4 ,  - X 5 ,  - X 6 )  

Among ~, fl, 7 the relations ~2 =/32 = 72 = ~ ; ~fi = 7, ~7 = fl, f17 = ~ hold. We 
have mentioned the above symmetries because they have important 
implications. A set A is symmetric with respct to a symmetry operation ~ if, 
together with any point P, it contains the point a(P). Two sets A and B are 
symmetrically conjugate under a if for any point P belonging to A its 
image a(P) belongs to B and vice versa. As a consequence of the sym- 
metries of our systems any invariant set (periodic orbit, torus, strange 
attractor) either is symmetric under the symmetries of the model or is 
bound to occur together with its conjugate partners. Moreover in the 
presence of symmetries a periodic orbit, besides other types of bifurcations, 
can undergo that with symmetry breaking: it becomes unstable and at the 
same time a couple of asymmetric orbits appear close to it. In models I and 
II the tori we will discuss in the following are symmetric, while in model III 
we get a couple of them, clearly separated in phase space, transformed into 
each other by e or ft. 
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A common tool to investigate the evolution (under parameter change) 
of the tori is provided by the Poincar6 sections, that is, the intersection cur- 
ves produced by the dynamical flow on the two-dimensional torus when 
the trajectories intersect a given (fixed) hyperplane transverse to them. In 
general, as is the case in our models I and III, one gets more than one 
closed curve. The Poincar6 sections shown in the following refer, for each 
model, to a fixed hyperplane and, for the sake of clarity, to a fixed single 
curve projected on a two-dimensional plane. 

Another useful notion to describe the dynamics on a two-dimensional 
torus is that of rotation number, corresponding to the ratio of the two 
independent frequencies characterizing the doubly periodic motion. One 
takes a two-dimensional projection of a Poincar6 section, chooses in the 
interior of a closed curve F a fixed point and let it be the origin of a system 
of polar coordinates. If 0 denotes the angular coordinate of a point P on F 
and 0' that of next crossing P', one gets the map f :  

f :  0--* 0' or O'-f(O) 

Taking any initial angle 0o on F the rotation number associated to it is 
defined 

1 
P(0~ v~o~lim ~-~vfV(Oo) 

Actually p on the torus is independent of 0 0. If 0 o belongs to a closed 
periodic orbit one gets 

p(Oo) = m/n 

where n denotes the number of points in which the orbit crosses the section 
and m the number of full rotations made around the origin when one 
follows the point with angular coordinate 0o back to itself. For  details see 
the references quoted in Ref. 17. We will say that there is a resonance m/n 
on a torus when the two generally incommensurate frequencies of the 
motion become rationally related producing a simple periodic motion with 
an orbit of rotation number equal to m/n. 

It is clear that the one-dimensional map f(O), although often useful in 
practice, cannot characterize the motion on the torus faithfully. In fact it 
contains no information about the other coordinate (amplitude) associated 
to the projected Poincar6 map P ~ P'. 

A different one-dimensional map, better suited to describe the 
dynamics on the torus, can be constructed using as variable the arc length 
of the closed curves in the full Poincar6 sections. Take again a two-dimen- 
sional projection F of the intersection of the torus with the fixed hyper- 
plane of the Poincar6 section. Choose any point Po on it. To any other 
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point P on F associate 2, the arc length (in R N-  I if the phase space is R N) 

joining Po and P on F, let us say clockwise. Again the Poincar6 map 
P--.  P '  defines a one-dimensional map: 

~o: 2--*2' or ~o(2) - 2' 

In the following we will refer both to f (O) and ~o(2). 

3. R E S U L T S  

Figure 1 (not on scale) summarizes the results concerning model I. 
The torus T(A) arises via an Hopf bifurcation from the periodic orbit A at 
R = C1, 232.20 < C1 < 232.30. Figure 2 shows its nicely smooth cross sec- 
tion at R = 235.05. As R increases further the section of the torus grows in 
size and at the same time develops four corners which become more and 
more pronounced. Figure 3a shows that at R = 240.30 the four kinks are 
already very sharp and the trajectory on the torus spend most of the time 
close to them. A plot of the second iterate of the one dimensional map f (O) 
relative to the curve of Fig. 3a indicate that four fixed points are about to 
appear (see Fig. 3b). This happens for R = C 2 ,  240.610<C2<240.615 
when the orbit A T  is borne through tangent bifurcation. A T  and its sym- 
metric conjugate is shown in Fig. 4. When R approaches C2 a sequence of 
resonances is found. The nth resonance has rotation number given by 

Pn = n/(2n + 1 ) 

Some of these resonances are symmetric, others are not. Figure 5 shows the 
resonance with rotation number 5/11 and its conjugate, while the following 
Table gives the values of the parameter R at which some elements of the 
sequence were found: 

3/7 234.9322 
4/9 236.84 925 
5/11 237.9487 
6/13 238.6368 
7/15 239.086 11 
8/17 239.399 O0 
9/19 239.627 73 

10/21 239.795 50 
11/23 239.923 20 
12/25 240.023 50 
13/27 240.101 70 
14/29 240.166 30 
15/31 240.217 60 
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Fig. 1. 

Fig. 2. 
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Schematic picture (not on scale) of the phenomenology found in model I as the 
parameter R is varied. 
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Fig. 3. (a) Projection of T(A)  at R=240.30 showing the growth and the changing shape of 
the torus. (b) Plot of the second iterate o f f (0 )  constructed for Fig. 4a taking as origin of the 
polar coordinates in the plane X3-X4 the point (11.75, 20.70); four fixed points (intersec- 
tions with the line )(3 = )(4) are about to appear. 
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Projections on the plane X3-X  4 of the intersections of A T ' ( + )  and its conjugate (*) 
with the hyperplane X2 = 0 at R = 240.620. 
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Resonance with rotation number 5/11 ( + )  and its symmetrically conjugate (*): pro- 
jections on the X3-X  4 plane of the intersections with the hyperplane X 2 = 0. 



I 6 I i 6 
I 

�9 
40

 • 

I 
1

1
.4

4
 / 

2 

I 
-

7
-

-
 

1 
1 

1 
I 

I 
I 

--
I-

--
 

0
.2

0
 

0
- 

4
0

 
0

.6
0

 
0

.8
0

 
�9

 0
0

 

S
I.

 
O

M
A

 

• 
I 

I 
I 

I 
I 

I 
I 

1
1

.4
8

 
11

 
.5

2
 

11
 

.5
6

 
1

!.
6

0
 

o o o o
- 

o 

o=
- 

H
O

 
i 

c0
~_

 

g 6-
 

g S 
.0

0
 

t 

--
I 

O
~ -4
 

O
 

,,,
t 

T
' 

O
 

O
 

Fi
g.

 6
. 

(a
) 

(b
) 

(a
) 

E
nl

ar
gm

en
t 

of
 t

he
 i

ns
et

 o
f 

Fi
g.

 3
a.

 (
b)

 S
ec

on
d 

it
er

at
e 

of
 t

he
 f

un
ct

io
n 

~0
(2

) c
on

st
ru

ct
ed

 f
or

 t
he

 p
oi

nt
s 

of
 F

ig
. 6

a.
 

O
 

r 



210 Riela 

The resonances quoted above (and in the following tables as well) are very 
likely produced and destroyed through saddle node bifurcations; however, 
owing to their very short lifetime, of the order of 10 -5 units in the 
parameter R, we were not able to check this point numerically. 
Interestingly enough, the orbit AT is exactly the final resonance with 
rotation number p~ = 1/2 and C2 = Roo. From the table above one gets the 
critical behavior 

R oo - R n o c  rt - 2  

which is very much the same as that reported for one- and two-dimensional 
maps in Ref. 19 where it is shown to be a consequence of the normal form 
of the saddle node bifurcation, that is, 

X'=X+X2+# 

with/~ = R~ - R. 
This succession of resonances has already been reported in Ref. 17 

where, however, the further approach to chaos of the model was not 
studied in detail. In order to check that we were actually dealing with a 
torus up to C2 we loked at the map q~(2) and found that it was indeed 
invertible until the critical point was reached. Figure 6a shows a portion of 
the torus corresponding to the inset in Fig. 3a and relative second iterate of 
~0(fl) (Fig. 6b). Notice that in this case, because of the little loop in Fig. 6a, 
f(O) would have been noninvertible, suggesting erroneously break-up of the 
torus. 

For  parameter values larger than C3, 252.80 < C3 < 252.90, there is a 
strange attractor shown in Fig. 7a at R = 253.00. Some details of its struc- 
ture are shown in Fig. 7b. Between C3 and C4, 253.50 < C4 < 253.60, it 
coexists with the couple of (symmetrically conjugate) orbits we denoted 
AT. When R decreases from C4 to C3 the hyperbolic orbits (AT)' 
associated to AT become closer and closer to the strange attractor until 
they collide at C3. As a consequence of the collision the strange attractor 
disappears so that between C3 and C2 there is no more hysteresis. 
Figure 7a shows the approach to the collision. 

The overall transition from the torus to the strange attractor seems 
therefore to proceed in two steps: First the sequence of resonances (fre- 
quency lockings) on the torus leads to the final locking with Poo = 1/2; the 
corresponding intermediate periodic regime destroys the aperiodic motion 
existing at higher values of the parameter when the associated hyperbolic 
orbits collide with the strange attractor at C3. The disappearance of chaos 
through the mechanism of the collision had not been observed yet in 
Ref. 17. The orbits AT and (AT)' disappear finally through collapse at Ca. 
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Figure 8 summarizes the results for model II. The torus T(B) arises 
from the periodic orbit B at R = C1, 73.30 < C1 < 73.50, via a Hopf bifur- 
cation. The two independent frequencies characterizing the doubly periodic 
motion have ratio close to 1/5. T(B) initially grows smoothly in size with 
increasing R. When R increases further the sections develop kinks as shown 
in Fig. 9a. When R = C2, 75.60 < C2 < 75.65, the orbit BT appears together 
with its hyperbolic partner (BT)' through a tangent bifurcation. In the 
range of parameter between C2 and C3, 75.25 < C3 <75.30, there is 
hysteresis because of the coexistence of (BT) with another attractor 
indicated in Fig. 8 as T(B), a two-dimensiona torus. In fact we do not have 
a biperiodic motion all the way up to C3. We looked at the one-dimen- 
sional map associated to the cross section of the torus when R approaches 
C3 and found that the greatest value for which (p(2) is invertible is 
R = 73.67. Between R = 75.68 and R = 75.71 there is a periodic regime with 
an orbital of rotation number 14/73. At R = 75.72, although the intersec- 
tion curve in the Poincar6 section looks very much like that of a torus (see 
details in Fig. 10) (#(2) is not invertible, indicating that we are dealing with 
a strange attractor. This is confirmed by the computation of the Lyapunov 
exponents. The toruslike attractor disappears at C3 when it collides with 
the hyperbolic orbit (BT)'. The approach to the collision is shown in 
Fig. 9b. 

As R increases beyond C3 (BT)' becomes more and more unstable, 
while BT at C4, 75.99 < C4 < 76.00 undergoes a symmetry-breaking bifur- 

Fig. 8. 
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Schematic picture (not on scale) of the phenomenology found in model II as the 
parameter R varies. 
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(a) Torus  T(B) at R = 75.60. (b) Enlargment  of the inset of Fig. 9a showing T(B) at 
R = 75.72 together with BT' at R = 75.66 ( + )  and at R = 75.72 (*). 



214 Riela 

cation. In the schematic Fig. 8 we do not distinguish between BT and 
(BT)asymm m. This latter (actually the couple of them) at R = C5, 76.01 < 
C5 < 76.02 becomes unstable because of a pitcfork bifurcation followed by a 
Feigenbaum sequence leading to chaos. Figures 10a-10c, which refer to the 
same region in phase space shown in Fig. 9b, indicate first the chaotic 
bands associated to (BT)a~ymm and its conjugate, then their merging, and 
finally full chaos. 

As in model I, the intermediate periodic regime of BT provides a link 
between doubly periodic and fully aperiodic behavior. 

Figure ll  shows the resonances 10/51, 15/76, and 20/101 found at R 
values of 74.360, 74.0425, and 73.873, respectively. They are members of a 
sequence whose elements appears at the values Rn of the parameter, with 
rotation number given by 

Pn = n / (5n  + 1 ) 

-I X4 

R = 7 6 . 0 3 5 0  

1 /  
, / , /  

t 

7, 

Lr.so' -~.,6' -~.,2' -~.3.' -~.3~' -~.~o' 

(a) 

X3 
-~.2~' -~.22 

Fig. 10. (a) Projections of the strange attractor produced by the Feigenbaum sequence of BT 
(2) and its conjugate (1): pieces present in the same region shown in Fig. 9b. (b) Merging of 
the pieces 1 and 2 of Fig. 10a. (c) Full chaos. 
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Fig. 11. From outside inward: resonances 10/51, 15/76, and 20/101 on the torus T(B) at 
R = 74.360, 74.0425, and 73.8940 respectively. (Projections on the X3-X 4 plane of the intersec- 
tions with the hyperplane XI = 0. 

The following table gives some values of the couples (Pn, Rn): 

5/26 75.580 
6/31 75.130 
7/36 74.825 
8/41 74.620 
9/46 74.470 
10/51 74.360 
11/56 74.270 
12/61 74.195 
13/66 74.135 
14/71 74.085 
15/76 74.0425 
16/81 74.0050 
17/86 73.9720 
18/91 73.9430 
19/96 73.9170 
20/101 73.8940 
21/106 73.8730 
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Fig. 12. Torus  T(B) at R = 73.400 ( inside)  and  R = 73.55 (outside)�9 

Note that R n decreases as n increases. R~ occurs at R = 63.475, a value of 
the parameter between C1 and C2. The critical behavior indicated by the 
table above is 

R n -  Roo oc rt 1 

This critical behavior is different from that encountered in model I, but this 
is not surprising because in the present case no transition occurs at R~.  In 
fact Fig. 12 shows the cross sections of T(B) at an R value slightly smaller 
(inside) and slightly larger (outside) than Roo. Figure 13a and 13b show 
the associated one-dimensional maps given by the fifth iterate o f f ( 0 )  and 
indicate clearly that at R~ it takes the normal form 

X / ~ X "  

This means that at R~ the torus is spanned by an infinity of resonances 
with rotation number Poo = 1/5. This degeneracy is clearly due to some 
symmetry property which is not present for arbitrary values of the 
parameter but shows up only at Roo. The origin and nature of this 
"accidental" symmetry is not clear to us. 

The overall transition torus-chaos in model III is shown again 
schematically and not on scale in Fig. 14. The torus T(C) originates from 
the periodic orbit C at R = C1, 89.92 < C1 < 89.93. As R increases we find 
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(a) Fifth iterate of f(O) corresponding to the smaller cross section of Fig. 12. 
(b) Fifth iterate o f f ( 0 )  corresponding to the larger cross section of Fig. 12. 



Transitions Tori-Chaos 219 

PERIODIC 

BIPERIODIC 

PERIODIC 

APERIODIC 

T (C) 
§ 

d 
o 

A--c! . . . .  1 

CH 

Cl 02 03 04 

Fig. 14. Schematic picture (not on scale) of the phenomenology found in model III as the 
parameter R varies. 
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once more that the torus grows in size and begins to develop kinks. At the 
same time a sequence of resonances is found with rotation numbers 

p ~ = n / (2n  + 1 ) 

Some values for the couples (p,, R,) are given in the following table: 

5/11 90.300 
6/13 90.550 
7/15 90.720 
8/17 90.825 
9/19 90.898 

10/21 90.9485 
11/23 90.9835 
12/25 91.0070 
13/27 91.0235 
14/29 91.0350 
15/31 91.0427 
16/33 91.0480 
17/35 91.0520 

Between C2 (90.95 < C2 < 90.96) and C3 (91.06 < C3 < 91.07) the torus 
coexists with the periodic orbit C T  (actually a couple of them, sym- 
metrically conjugate of each other under ~) and its hyperbolic companion 
( C T ) '  borne together at R = C2. C T  and ( C T ) '  have both rotation number 
1/2. At R = C3 ( C T ) '  collides with the torus destroying it. We have used the 
one-dimensional map (p to check that the doubly periodic motion persists 
up to the collision point. The approaching collision is also indicated in 
Fig. 15, while Figs. 16 and 17 show that the one-dimensional map ~0 is 
nicely invertible up to R =  91.061. The same result has been reported 
independently in Ref. 18. 

Back to the sequence of resonances the critical behavior suggested by 
the data is 

R o o -  R ,  oc (~ +~ 

where R~ = C3 and ~ 0 . 7 .  This behavior differs from the previous two but 
in this case R~o is a critical point in which a collision occurs. 

4. CONCLUSION 

All of the models described above show the common feature of 
exhibiting an intermediate periodic regime between an initial doubly 
periodic and a final aperiodic behavior. In particular it is the hyperbolic 
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orbit associated to the periodic motion which destroys either a torus or a 
strange attractor. On the other hand the sequence of resonances found on 
the tori have different critical behavior: in model I Ro~ corresponds to the 
sharp transition torus-periodic orbit via final frequency locking and 
(Ro~- Rn) goes like an inverse square with n. In model II Ro~ corresponds 
to a normal, smoth biperiodic regime and one finds simple 1In decrease. 
Finally in model III R~ is a collision point and we get power law 6 n. One 
could ask oneself if the critical behavior in models I and III belongs to 
nontrivial universality classes. As for model I the results of Refs. 19 and 20 
suggest that this could be the case. For model III the question seems open. 
There are in fact similar results in some recent literature dealing with 
breakdown of tori in dissipative systems (see Refs. 23-25) but the connec- 
tions with our cases are not obvious to us. The collision mechanism found 
in our models has been reported independently also in Ref. 18. We are 
inclined to believe that it could show up under closer examination also in 
the systems considered in Refs. 13, 21, and 22. The analogy with the "crisis" 
events of Ref. 14 is very striking but probably more experimental 
(numerical) evidence and theoretical work are needed to appreciate fully its 
genericity and relevance in the behavior of dynamical systems. 
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